Рассчитать высоту треугольника со сторонами 107, 104 и 55
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{107 + 104 + 55}{2}} \normalsize = 133}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{133(133-107)(133-104)(133-55)}}{104}\normalsize = 53.7842914}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{133(133-107)(133-104)(133-55)}}{107}\normalsize = 52.2763206}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{133(133-107)(133-104)(133-55)}}{55}\normalsize = 101.701206}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 107, 104 и 55 равна 53.7842914
Высота треугольника опущенная с вершины A на сторону BC со сторонами 107, 104 и 55 равна 52.2763206
Высота треугольника опущенная с вершины C на сторону AB со сторонами 107, 104 и 55 равна 101.701206
Ссылка на результат
?n1=107&n2=104&n3=55
Найти высоту треугольника со сторонами 121, 92 и 42
Найти высоту треугольника со сторонами 143, 137 и 115
Найти высоту треугольника со сторонами 122, 106 и 55
Найти высоту треугольника со сторонами 91, 91 и 76
Найти высоту треугольника со сторонами 51, 45 и 43
Найти высоту треугольника со сторонами 134, 125 и 69
Найти высоту треугольника со сторонами 143, 137 и 115
Найти высоту треугольника со сторонами 122, 106 и 55
Найти высоту треугольника со сторонами 91, 91 и 76
Найти высоту треугольника со сторонами 51, 45 и 43
Найти высоту треугольника со сторонами 134, 125 и 69