Рассчитать высоту треугольника со сторонами 107, 105 и 61
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{107 + 105 + 61}{2}} \normalsize = 136.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{136.5(136.5-107)(136.5-105)(136.5-61)}}{105}\normalsize = 58.9449743}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{136.5(136.5-107)(136.5-105)(136.5-61)}}{107}\normalsize = 57.8431991}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{136.5(136.5-107)(136.5-105)(136.5-61)}}{61}\normalsize = 101.462661}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 107, 105 и 61 равна 58.9449743
Высота треугольника опущенная с вершины A на сторону BC со сторонами 107, 105 и 61 равна 57.8431991
Высота треугольника опущенная с вершины C на сторону AB со сторонами 107, 105 и 61 равна 101.462661
Ссылка на результат
?n1=107&n2=105&n3=61
Найти высоту треугольника со сторонами 150, 129 и 113
Найти высоту треугольника со сторонами 144, 103 и 52
Найти высоту треугольника со сторонами 92, 65 и 63
Найти высоту треугольника со сторонами 132, 117 и 87
Найти высоту треугольника со сторонами 125, 122 и 85
Найти высоту треугольника со сторонами 103, 89 и 76
Найти высоту треугольника со сторонами 144, 103 и 52
Найти высоту треугольника со сторонами 92, 65 и 63
Найти высоту треугольника со сторонами 132, 117 и 87
Найти высоту треугольника со сторонами 125, 122 и 85
Найти высоту треугольника со сторонами 103, 89 и 76