Рассчитать высоту треугольника со сторонами 107, 107 и 102
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{107 + 107 + 102}{2}} \normalsize = 158}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{158(158-107)(158-107)(158-102)}}{107}\normalsize = 89.6683031}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{158(158-107)(158-107)(158-102)}}{107}\normalsize = 89.6683031}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{158(158-107)(158-107)(158-102)}}{102}\normalsize = 94.0638081}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 107, 107 и 102 равна 89.6683031
Высота треугольника опущенная с вершины A на сторону BC со сторонами 107, 107 и 102 равна 89.6683031
Высота треугольника опущенная с вершины C на сторону AB со сторонами 107, 107 и 102 равна 94.0638081
Ссылка на результат
?n1=107&n2=107&n3=102
Найти высоту треугольника со сторонами 128, 74 и 70
Найти высоту треугольника со сторонами 97, 70 и 29
Найти высоту треугольника со сторонами 105, 100 и 13
Найти высоту треугольника со сторонами 72, 62 и 22
Найти высоту треугольника со сторонами 125, 120 и 72
Найти высоту треугольника со сторонами 79, 55 и 25
Найти высоту треугольника со сторонами 97, 70 и 29
Найти высоту треугольника со сторонами 105, 100 и 13
Найти высоту треугольника со сторонами 72, 62 и 22
Найти высоту треугольника со сторонами 125, 120 и 72
Найти высоту треугольника со сторонами 79, 55 и 25