Рассчитать высоту треугольника со сторонами 107, 76 и 55
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{107 + 76 + 55}{2}} \normalsize = 119}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{119(119-107)(119-76)(119-55)}}{76}\normalsize = 52.1680642}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{119(119-107)(119-76)(119-55)}}{107}\normalsize = 37.0539522}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{119(119-107)(119-76)(119-55)}}{55}\normalsize = 72.0867797}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 107, 76 и 55 равна 52.1680642
Высота треугольника опущенная с вершины A на сторону BC со сторонами 107, 76 и 55 равна 37.0539522
Высота треугольника опущенная с вершины C на сторону AB со сторонами 107, 76 и 55 равна 72.0867797
Ссылка на результат
?n1=107&n2=76&n3=55
Найти высоту треугольника со сторонами 111, 91 и 39
Найти высоту треугольника со сторонами 137, 133 и 108
Найти высоту треугольника со сторонами 83, 54 и 34
Найти высоту треугольника со сторонами 128, 108 и 86
Найти высоту треугольника со сторонами 114, 109 и 9
Найти высоту треугольника со сторонами 111, 105 и 26
Найти высоту треугольника со сторонами 137, 133 и 108
Найти высоту треугольника со сторонами 83, 54 и 34
Найти высоту треугольника со сторонами 128, 108 и 86
Найти высоту треугольника со сторонами 114, 109 и 9
Найти высоту треугольника со сторонами 111, 105 и 26