Рассчитать высоту треугольника со сторонами 107, 85 и 55
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{107 + 85 + 55}{2}} \normalsize = 123.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{123.5(123.5-107)(123.5-85)(123.5-55)}}{85}\normalsize = 54.5459075}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{123.5(123.5-107)(123.5-85)(123.5-55)}}{107}\normalsize = 43.3308611}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{123.5(123.5-107)(123.5-85)(123.5-55)}}{55}\normalsize = 84.2982206}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 107, 85 и 55 равна 54.5459075
Высота треугольника опущенная с вершины A на сторону BC со сторонами 107, 85 и 55 равна 43.3308611
Высота треугольника опущенная с вершины C на сторону AB со сторонами 107, 85 и 55 равна 84.2982206
Ссылка на результат
?n1=107&n2=85&n3=55
Найти высоту треугольника со сторонами 131, 129 и 26
Найти высоту треугольника со сторонами 116, 92 и 40
Найти высоту треугольника со сторонами 150, 121 и 89
Найти высоту треугольника со сторонами 130, 106 и 93
Найти высоту треугольника со сторонами 90, 85 и 21
Найти высоту треугольника со сторонами 67, 58 и 37
Найти высоту треугольника со сторонами 116, 92 и 40
Найти высоту треугольника со сторонами 150, 121 и 89
Найти высоту треугольника со сторонами 130, 106 и 93
Найти высоту треугольника со сторонами 90, 85 и 21
Найти высоту треугольника со сторонами 67, 58 и 37