Рассчитать высоту треугольника со сторонами 107, 85 и 57
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{107 + 85 + 57}{2}} \normalsize = 124.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{124.5(124.5-107)(124.5-85)(124.5-57)}}{85}\normalsize = 56.7107256}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{124.5(124.5-107)(124.5-85)(124.5-57)}}{107}\normalsize = 45.0505764}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{124.5(124.5-107)(124.5-85)(124.5-57)}}{57}\normalsize = 84.5686259}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 107, 85 и 57 равна 56.7107256
Высота треугольника опущенная с вершины A на сторону BC со сторонами 107, 85 и 57 равна 45.0505764
Высота треугольника опущенная с вершины C на сторону AB со сторонами 107, 85 и 57 равна 84.5686259
Ссылка на результат
?n1=107&n2=85&n3=57
Найти высоту треугольника со сторонами 89, 72 и 61
Найти высоту треугольника со сторонами 149, 111 и 57
Найти высоту треугольника со сторонами 55, 46 и 34
Найти высоту треугольника со сторонами 122, 115 и 106
Найти высоту треугольника со сторонами 134, 116 и 27
Найти высоту треугольника со сторонами 43, 33 и 14
Найти высоту треугольника со сторонами 149, 111 и 57
Найти высоту треугольника со сторонами 55, 46 и 34
Найти высоту треугольника со сторонами 122, 115 и 106
Найти высоту треугольника со сторонами 134, 116 и 27
Найти высоту треугольника со сторонами 43, 33 и 14