Рассчитать высоту треугольника со сторонами 107, 88 и 34
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{107 + 88 + 34}{2}} \normalsize = 114.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{114.5(114.5-107)(114.5-88)(114.5-34)}}{88}\normalsize = 30.7610798}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{114.5(114.5-107)(114.5-88)(114.5-34)}}{107}\normalsize = 25.2988319}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{114.5(114.5-107)(114.5-88)(114.5-34)}}{34}\normalsize = 79.6169123}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 107, 88 и 34 равна 30.7610798
Высота треугольника опущенная с вершины A на сторону BC со сторонами 107, 88 и 34 равна 25.2988319
Высота треугольника опущенная с вершины C на сторону AB со сторонами 107, 88 и 34 равна 79.6169123
Ссылка на результат
?n1=107&n2=88&n3=34
Найти высоту треугольника со сторонами 67, 49 и 34
Найти высоту треугольника со сторонами 52, 41 и 40
Найти высоту треугольника со сторонами 122, 87 и 87
Найти высоту треугольника со сторонами 79, 71 и 41
Найти высоту треугольника со сторонами 49, 48 и 48
Найти высоту треугольника со сторонами 147, 142 и 11
Найти высоту треугольника со сторонами 52, 41 и 40
Найти высоту треугольника со сторонами 122, 87 и 87
Найти высоту треугольника со сторонами 79, 71 и 41
Найти высоту треугольника со сторонами 49, 48 и 48
Найти высоту треугольника со сторонами 147, 142 и 11