Рассчитать высоту треугольника со сторонами 107, 88 и 50
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{107 + 88 + 50}{2}} \normalsize = 122.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{122.5(122.5-107)(122.5-88)(122.5-50)}}{88}\normalsize = 49.5290237}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{122.5(122.5-107)(122.5-88)(122.5-50)}}{107}\normalsize = 40.7341504}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{122.5(122.5-107)(122.5-88)(122.5-50)}}{50}\normalsize = 87.1710818}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 107, 88 и 50 равна 49.5290237
Высота треугольника опущенная с вершины A на сторону BC со сторонами 107, 88 и 50 равна 40.7341504
Высота треугольника опущенная с вершины C на сторону AB со сторонами 107, 88 и 50 равна 87.1710818
Ссылка на результат
?n1=107&n2=88&n3=50
Найти высоту треугольника со сторонами 38, 31 и 18
Найти высоту треугольника со сторонами 118, 82 и 41
Найти высоту треугольника со сторонами 59, 57 и 10
Найти высоту треугольника со сторонами 135, 110 и 75
Найти высоту треугольника со сторонами 143, 115 и 56
Найти высоту треугольника со сторонами 66, 49 и 20
Найти высоту треугольника со сторонами 118, 82 и 41
Найти высоту треугольника со сторонами 59, 57 и 10
Найти высоту треугольника со сторонами 135, 110 и 75
Найти высоту треугольника со сторонами 143, 115 и 56
Найти высоту треугольника со сторонами 66, 49 и 20