Рассчитать высоту треугольника со сторонами 107, 89 и 67
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{107 + 89 + 67}{2}} \normalsize = 131.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{131.5(131.5-107)(131.5-89)(131.5-67)}}{89}\normalsize = 66.7821244}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{131.5(131.5-107)(131.5-89)(131.5-67)}}{107}\normalsize = 55.5477483}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{131.5(131.5-107)(131.5-89)(131.5-67)}}{67}\normalsize = 88.7105831}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 107, 89 и 67 равна 66.7821244
Высота треугольника опущенная с вершины A на сторону BC со сторонами 107, 89 и 67 равна 55.5477483
Высота треугольника опущенная с вершины C на сторону AB со сторонами 107, 89 и 67 равна 88.7105831
Ссылка на результат
?n1=107&n2=89&n3=67
Найти высоту треугольника со сторонами 132, 105 и 98
Найти высоту треугольника со сторонами 140, 127 и 100
Найти высоту треугольника со сторонами 102, 87 и 76
Найти высоту треугольника со сторонами 126, 108 и 90
Найти высоту треугольника со сторонами 88, 69 и 24
Найти высоту треугольника со сторонами 100, 72 и 58
Найти высоту треугольника со сторонами 140, 127 и 100
Найти высоту треугольника со сторонами 102, 87 и 76
Найти высоту треугольника со сторонами 126, 108 и 90
Найти высоту треугольника со сторонами 88, 69 и 24
Найти высоту треугольника со сторонами 100, 72 и 58