Рассчитать высоту треугольника со сторонами 107, 94 и 14
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{107 + 94 + 14}{2}} \normalsize = 107.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{107.5(107.5-107)(107.5-94)(107.5-14)}}{94}\normalsize = 5.54196867}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{107.5(107.5-107)(107.5-94)(107.5-14)}}{107}\normalsize = 4.86864537}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{107.5(107.5-107)(107.5-94)(107.5-14)}}{14}\normalsize = 37.210361}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 107, 94 и 14 равна 5.54196867
Высота треугольника опущенная с вершины A на сторону BC со сторонами 107, 94 и 14 равна 4.86864537
Высота треугольника опущенная с вершины C на сторону AB со сторонами 107, 94 и 14 равна 37.210361
Ссылка на результат
?n1=107&n2=94&n3=14
Найти высоту треугольника со сторонами 124, 119 и 76
Найти высоту треугольника со сторонами 66, 60 и 10
Найти высоту треугольника со сторонами 141, 87 и 66
Найти высоту треугольника со сторонами 119, 113 и 105
Найти высоту треугольника со сторонами 90, 90 и 65
Найти высоту треугольника со сторонами 150, 136 и 35
Найти высоту треугольника со сторонами 66, 60 и 10
Найти высоту треугольника со сторонами 141, 87 и 66
Найти высоту треугольника со сторонами 119, 113 и 105
Найти высоту треугольника со сторонами 90, 90 и 65
Найти высоту треугольника со сторонами 150, 136 и 35