Рассчитать высоту треугольника со сторонами 108, 100 и 15
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{108 + 100 + 15}{2}} \normalsize = 111.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{111.5(111.5-108)(111.5-100)(111.5-15)}}{100}\normalsize = 13.1617619}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{111.5(111.5-108)(111.5-100)(111.5-15)}}{108}\normalsize = 12.1868165}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{111.5(111.5-108)(111.5-100)(111.5-15)}}{15}\normalsize = 87.745079}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 108, 100 и 15 равна 13.1617619
Высота треугольника опущенная с вершины A на сторону BC со сторонами 108, 100 и 15 равна 12.1868165
Высота треугольника опущенная с вершины C на сторону AB со сторонами 108, 100 и 15 равна 87.745079
Ссылка на результат
?n1=108&n2=100&n3=15
Найти высоту треугольника со сторонами 121, 70 и 67
Найти высоту треугольника со сторонами 137, 123 и 99
Найти высоту треугольника со сторонами 128, 115 и 112
Найти высоту треугольника со сторонами 132, 128 и 28
Найти высоту треугольника со сторонами 110, 91 и 43
Найти высоту треугольника со сторонами 142, 119 и 101
Найти высоту треугольника со сторонами 137, 123 и 99
Найти высоту треугольника со сторонами 128, 115 и 112
Найти высоту треугольника со сторонами 132, 128 и 28
Найти высоту треугольника со сторонами 110, 91 и 43
Найти высоту треугольника со сторонами 142, 119 и 101