Рассчитать высоту треугольника со сторонами 108, 103 и 31
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{108 + 103 + 31}{2}} \normalsize = 121}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{121(121-108)(121-103)(121-31)}}{103}\normalsize = 30.9966414}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{121(121-108)(121-103)(121-31)}}{108}\normalsize = 29.5616117}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{121(121-108)(121-103)(121-31)}}{31}\normalsize = 102.988841}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 108, 103 и 31 равна 30.9966414
Высота треугольника опущенная с вершины A на сторону BC со сторонами 108, 103 и 31 равна 29.5616117
Высота треугольника опущенная с вершины C на сторону AB со сторонами 108, 103 и 31 равна 102.988841
Ссылка на результат
?n1=108&n2=103&n3=31
Найти высоту треугольника со сторонами 136, 92 и 92
Найти высоту треугольника со сторонами 58, 53 и 26
Найти высоту треугольника со сторонами 74, 63 и 40
Найти высоту треугольника со сторонами 120, 117 и 54
Найти высоту треугольника со сторонами 149, 144 и 137
Найти высоту треугольника со сторонами 99, 94 и 84
Найти высоту треугольника со сторонами 58, 53 и 26
Найти высоту треугольника со сторонами 74, 63 и 40
Найти высоту треугольника со сторонами 120, 117 и 54
Найти высоту треугольника со сторонами 149, 144 и 137
Найти высоту треугольника со сторонами 99, 94 и 84