Рассчитать высоту треугольника со сторонами 108, 104 и 18

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{108 + 104 + 18}{2}} \normalsize = 115}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{115(115-108)(115-104)(115-18)}}{104}\normalsize = 17.8228358}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{115(115-108)(115-104)(115-18)}}{108}\normalsize = 17.1627308}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{115(115-108)(115-104)(115-18)}}{18}\normalsize = 102.976385}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 108, 104 и 18 равна 17.8228358
Высота треугольника опущенная с вершины A на сторону BC со сторонами 108, 104 и 18 равна 17.1627308
Высота треугольника опущенная с вершины C на сторону AB со сторонами 108, 104 и 18 равна 102.976385
Ссылка на результат
?n1=108&n2=104&n3=18