Рассчитать высоту треугольника со сторонами 108, 105 и 28
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{108 + 105 + 28}{2}} \normalsize = 120.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{120.5(120.5-108)(120.5-105)(120.5-28)}}{105}\normalsize = 27.9914852}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{120.5(120.5-108)(120.5-105)(120.5-28)}}{108}\normalsize = 27.2139439}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{120.5(120.5-108)(120.5-105)(120.5-28)}}{28}\normalsize = 104.968069}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 108, 105 и 28 равна 27.9914852
Высота треугольника опущенная с вершины A на сторону BC со сторонами 108, 105 и 28 равна 27.2139439
Высота треугольника опущенная с вершины C на сторону AB со сторонами 108, 105 и 28 равна 104.968069
Ссылка на результат
?n1=108&n2=105&n3=28
Найти высоту треугольника со сторонами 122, 114 и 62
Найти высоту треугольника со сторонами 113, 110 и 7
Найти высоту треугольника со сторонами 135, 89 и 76
Найти высоту треугольника со сторонами 123, 114 и 89
Найти высоту треугольника со сторонами 133, 129 и 47
Найти высоту треугольника со сторонами 106, 103 и 33
Найти высоту треугольника со сторонами 113, 110 и 7
Найти высоту треугольника со сторонами 135, 89 и 76
Найти высоту треугольника со сторонами 123, 114 и 89
Найти высоту треугольника со сторонами 133, 129 и 47
Найти высоту треугольника со сторонами 106, 103 и 33