Рассчитать высоту треугольника со сторонами 108, 106 и 8
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{108 + 106 + 8}{2}} \normalsize = 111}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{111(111-108)(111-106)(111-8)}}{106}\normalsize = 7.81357638}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{111(111-108)(111-106)(111-8)}}{108}\normalsize = 7.66888052}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{111(111-108)(111-106)(111-8)}}{8}\normalsize = 103.529887}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 108, 106 и 8 равна 7.81357638
Высота треугольника опущенная с вершины A на сторону BC со сторонами 108, 106 и 8 равна 7.66888052
Высота треугольника опущенная с вершины C на сторону AB со сторонами 108, 106 и 8 равна 103.529887
Ссылка на результат
?n1=108&n2=106&n3=8
Найти высоту треугольника со сторонами 147, 123 и 74
Найти высоту треугольника со сторонами 126, 95 и 93
Найти высоту треугольника со сторонами 132, 126 и 86
Найти высоту треугольника со сторонами 88, 75 и 35
Найти высоту треугольника со сторонами 126, 125 и 54
Найти высоту треугольника со сторонами 114, 81 и 54
Найти высоту треугольника со сторонами 126, 95 и 93
Найти высоту треугольника со сторонами 132, 126 и 86
Найти высоту треугольника со сторонами 88, 75 и 35
Найти высоту треугольника со сторонами 126, 125 и 54
Найти высоту треугольника со сторонами 114, 81 и 54