Рассчитать высоту треугольника со сторонами 108, 108 и 15
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{108 + 108 + 15}{2}} \normalsize = 115.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{115.5(115.5-108)(115.5-108)(115.5-15)}}{108}\normalsize = 14.9637873}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{115.5(115.5-108)(115.5-108)(115.5-15)}}{108}\normalsize = 14.9637873}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{115.5(115.5-108)(115.5-108)(115.5-15)}}{15}\normalsize = 107.739269}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 108, 108 и 15 равна 14.9637873
Высота треугольника опущенная с вершины A на сторону BC со сторонами 108, 108 и 15 равна 14.9637873
Высота треугольника опущенная с вершины C на сторону AB со сторонами 108, 108 и 15 равна 107.739269
Ссылка на результат
?n1=108&n2=108&n3=15
Найти высоту треугольника со сторонами 149, 145 и 72
Найти высоту треугольника со сторонами 102, 67 и 60
Найти высоту треугольника со сторонами 105, 90 и 37
Найти высоту треугольника со сторонами 135, 83 и 66
Найти высоту треугольника со сторонами 105, 101 и 79
Найти высоту треугольника со сторонами 106, 100 и 29
Найти высоту треугольника со сторонами 102, 67 и 60
Найти высоту треугольника со сторонами 105, 90 и 37
Найти высоту треугольника со сторонами 135, 83 и 66
Найти высоту треугольника со сторонами 105, 101 и 79
Найти высоту треугольника со сторонами 106, 100 и 29