Рассчитать высоту треугольника со сторонами 108, 108 и 41
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{108 + 108 + 41}{2}} \normalsize = 128.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{128.5(128.5-108)(128.5-108)(128.5-41)}}{108}\normalsize = 40.2546163}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{128.5(128.5-108)(128.5-108)(128.5-41)}}{108}\normalsize = 40.2546163}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{128.5(128.5-108)(128.5-108)(128.5-41)}}{41}\normalsize = 106.03655}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 108, 108 и 41 равна 40.2546163
Высота треугольника опущенная с вершины A на сторону BC со сторонами 108, 108 и 41 равна 40.2546163
Высота треугольника опущенная с вершины C на сторону AB со сторонами 108, 108 и 41 равна 106.03655
Ссылка на результат
?n1=108&n2=108&n3=41
Найти высоту треугольника со сторонами 128, 128 и 112
Найти высоту треугольника со сторонами 142, 117 и 77
Найти высоту треугольника со сторонами 63, 56 и 22
Найти высоту треугольника со сторонами 112, 62 и 53
Найти высоту треугольника со сторонами 111, 83 и 55
Найти высоту треугольника со сторонами 63, 50 и 50
Найти высоту треугольника со сторонами 142, 117 и 77
Найти высоту треугольника со сторонами 63, 56 и 22
Найти высоту треугольника со сторонами 112, 62 и 53
Найти высоту треугольника со сторонами 111, 83 и 55
Найти высоту треугольника со сторонами 63, 50 и 50