Рассчитать высоту треугольника со сторонами 108, 69 и 45
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{108 + 69 + 45}{2}} \normalsize = 111}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{111(111-108)(111-69)(111-45)}}{69}\normalsize = 27.8483607}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{111(111-108)(111-69)(111-45)}}{108}\normalsize = 17.7920082}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{111(111-108)(111-69)(111-45)}}{45}\normalsize = 42.7008197}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 108, 69 и 45 равна 27.8483607
Высота треугольника опущенная с вершины A на сторону BC со сторонами 108, 69 и 45 равна 17.7920082
Высота треугольника опущенная с вершины C на сторону AB со сторонами 108, 69 и 45 равна 42.7008197
Ссылка на результат
?n1=108&n2=69&n3=45
Найти высоту треугольника со сторонами 90, 73 и 58
Найти высоту треугольника со сторонами 126, 107 и 22
Найти высоту треугольника со сторонами 99, 79 и 73
Найти высоту треугольника со сторонами 140, 138 и 80
Найти высоту треугольника со сторонами 99, 87 и 82
Найти высоту треугольника со сторонами 71, 54 и 45
Найти высоту треугольника со сторонами 126, 107 и 22
Найти высоту треугольника со сторонами 99, 79 и 73
Найти высоту треугольника со сторонами 140, 138 и 80
Найти высоту треугольника со сторонами 99, 87 и 82
Найти высоту треугольника со сторонами 71, 54 и 45