Рассчитать высоту треугольника со сторонами 108, 69 и 48

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{108 + 69 + 48}{2}} \normalsize = 112.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{112.5(112.5-108)(112.5-69)(112.5-48)}}{69}\normalsize = 34.5452157}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{112.5(112.5-108)(112.5-69)(112.5-48)}}{108}\normalsize = 22.0705545}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{112.5(112.5-108)(112.5-69)(112.5-48)}}{48}\normalsize = 49.6587476}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 108, 69 и 48 равна 34.5452157
Высота треугольника опущенная с вершины A на сторону BC со сторонами 108, 69 и 48 равна 22.0705545
Высота треугольника опущенная с вершины C на сторону AB со сторонами 108, 69 и 48 равна 49.6587476
Ссылка на результат
?n1=108&n2=69&n3=48