Рассчитать высоту треугольника со сторонами 108, 73 и 44
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{108 + 73 + 44}{2}} \normalsize = 112.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{112.5(112.5-108)(112.5-73)(112.5-44)}}{73}\normalsize = 32.0651656}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{112.5(112.5-108)(112.5-73)(112.5-44)}}{108}\normalsize = 21.6736768}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{112.5(112.5-108)(112.5-73)(112.5-44)}}{44}\normalsize = 53.1990248}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 108, 73 и 44 равна 32.0651656
Высота треугольника опущенная с вершины A на сторону BC со сторонами 108, 73 и 44 равна 21.6736768
Высота треугольника опущенная с вершины C на сторону AB со сторонами 108, 73 и 44 равна 53.1990248
Ссылка на результат
?n1=108&n2=73&n3=44
Найти высоту треугольника со сторонами 92, 82 и 65
Найти высоту треугольника со сторонами 54, 33 и 24
Найти высоту треугольника со сторонами 103, 100 и 65
Найти высоту треугольника со сторонами 110, 110 и 18
Найти высоту треугольника со сторонами 143, 110 и 104
Найти высоту треугольника со сторонами 145, 108 и 108
Найти высоту треугольника со сторонами 54, 33 и 24
Найти высоту треугольника со сторонами 103, 100 и 65
Найти высоту треугольника со сторонами 110, 110 и 18
Найти высоту треугольника со сторонами 143, 110 и 104
Найти высоту треугольника со сторонами 145, 108 и 108