Рассчитать высоту треугольника со сторонами 108, 76 и 50
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{108 + 76 + 50}{2}} \normalsize = 117}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{117(117-108)(117-76)(117-50)}}{76}\normalsize = 44.7568918}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{117(117-108)(117-76)(117-50)}}{108}\normalsize = 31.4955905}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{117(117-108)(117-76)(117-50)}}{50}\normalsize = 68.0304755}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 108, 76 и 50 равна 44.7568918
Высота треугольника опущенная с вершины A на сторону BC со сторонами 108, 76 и 50 равна 31.4955905
Высота треугольника опущенная с вершины C на сторону AB со сторонами 108, 76 и 50 равна 68.0304755
Ссылка на результат
?n1=108&n2=76&n3=50
Найти высоту треугольника со сторонами 80, 55 и 40
Найти высоту треугольника со сторонами 95, 90 и 49
Найти высоту треугольника со сторонами 124, 109 и 75
Найти высоту треугольника со сторонами 61, 58 и 46
Найти высоту треугольника со сторонами 78, 74 и 71
Найти высоту треугольника со сторонами 91, 69 и 54
Найти высоту треугольника со сторонами 95, 90 и 49
Найти высоту треугольника со сторонами 124, 109 и 75
Найти высоту треугольника со сторонами 61, 58 и 46
Найти высоту треугольника со сторонами 78, 74 и 71
Найти высоту треугольника со сторонами 91, 69 и 54