Рассчитать высоту треугольника со сторонами 108, 83 и 65
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{108 + 83 + 65}{2}} \normalsize = 128}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{128(128-108)(128-83)(128-65)}}{83}\normalsize = 64.9155017}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{128(128-108)(128-83)(128-65)}}{108}\normalsize = 49.8887652}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{128(128-108)(128-83)(128-65)}}{65}\normalsize = 82.8921021}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 108, 83 и 65 равна 64.9155017
Высота треугольника опущенная с вершины A на сторону BC со сторонами 108, 83 и 65 равна 49.8887652
Высота треугольника опущенная с вершины C на сторону AB со сторонами 108, 83 и 65 равна 82.8921021
Ссылка на результат
?n1=108&n2=83&n3=65
Найти высоту треугольника со сторонами 82, 81 и 60
Найти высоту треугольника со сторонами 101, 96 и 37
Найти высоту треугольника со сторонами 117, 110 и 106
Найти высоту треугольника со сторонами 117, 105 и 79
Найти высоту треугольника со сторонами 94, 66 и 30
Найти высоту треугольника со сторонами 99, 87 и 77
Найти высоту треугольника со сторонами 101, 96 и 37
Найти высоту треугольника со сторонами 117, 110 и 106
Найти высоту треугольника со сторонами 117, 105 и 79
Найти высоту треугольника со сторонами 94, 66 и 30
Найти высоту треугольника со сторонами 99, 87 и 77