Рассчитать высоту треугольника со сторонами 108, 89 и 44

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{108 + 89 + 44}{2}} \normalsize = 120.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{120.5(120.5-108)(120.5-89)(120.5-44)}}{89}\normalsize = 42.8128869}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{120.5(120.5-108)(120.5-89)(120.5-44)}}{108}\normalsize = 35.2809901}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{120.5(120.5-108)(120.5-89)(120.5-44)}}{44}\normalsize = 86.5987939}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 108, 89 и 44 равна 42.8128869
Высота треугольника опущенная с вершины A на сторону BC со сторонами 108, 89 и 44 равна 35.2809901
Высота треугольника опущенная с вершины C на сторону AB со сторонами 108, 89 и 44 равна 86.5987939
Ссылка на результат
?n1=108&n2=89&n3=44