Рассчитать высоту треугольника со сторонами 108, 92 и 91
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{108 + 92 + 91}{2}} \normalsize = 145.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{145.5(145.5-108)(145.5-92)(145.5-91)}}{92}\normalsize = 86.7090526}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{145.5(145.5-108)(145.5-92)(145.5-91)}}{108}\normalsize = 73.863267}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{145.5(145.5-108)(145.5-92)(145.5-91)}}{91}\normalsize = 87.6618993}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 108, 92 и 91 равна 86.7090526
Высота треугольника опущенная с вершины A на сторону BC со сторонами 108, 92 и 91 равна 73.863267
Высота треугольника опущенная с вершины C на сторону AB со сторонами 108, 92 и 91 равна 87.6618993
Ссылка на результат
?n1=108&n2=92&n3=91
Найти высоту треугольника со сторонами 124, 112 и 23
Найти высоту треугольника со сторонами 144, 144 и 102
Найти высоту треугольника со сторонами 113, 108 и 108
Найти высоту треугольника со сторонами 83, 61 и 50
Найти высоту треугольника со сторонами 150, 115 и 105
Найти высоту треугольника со сторонами 96, 96 и 24
Найти высоту треугольника со сторонами 144, 144 и 102
Найти высоту треугольника со сторонами 113, 108 и 108
Найти высоту треугольника со сторонами 83, 61 и 50
Найти высоту треугольника со сторонами 150, 115 и 105
Найти высоту треугольника со сторонами 96, 96 и 24