Рассчитать высоту треугольника со сторонами 108, 95 и 16
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{108 + 95 + 16}{2}} \normalsize = 109.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{109.5(109.5-108)(109.5-95)(109.5-16)}}{95}\normalsize = 9.9345657}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{109.5(109.5-108)(109.5-95)(109.5-16)}}{108}\normalsize = 8.73873834}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{109.5(109.5-108)(109.5-95)(109.5-16)}}{16}\normalsize = 58.9864838}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 108, 95 и 16 равна 9.9345657
Высота треугольника опущенная с вершины A на сторону BC со сторонами 108, 95 и 16 равна 8.73873834
Высота треугольника опущенная с вершины C на сторону AB со сторонами 108, 95 и 16 равна 58.9864838
Ссылка на результат
?n1=108&n2=95&n3=16
Найти высоту треугольника со сторонами 89, 84 и 28
Найти высоту треугольника со сторонами 50, 50 и 43
Найти высоту треугольника со сторонами 139, 117 и 47
Найти высоту треугольника со сторонами 99, 95 и 75
Найти высоту треугольника со сторонами 126, 79 и 56
Найти высоту треугольника со сторонами 148, 145 и 101
Найти высоту треугольника со сторонами 50, 50 и 43
Найти высоту треугольника со сторонами 139, 117 и 47
Найти высоту треугольника со сторонами 99, 95 и 75
Найти высоту треугольника со сторонами 126, 79 и 56
Найти высоту треугольника со сторонами 148, 145 и 101