Рассчитать высоту треугольника со сторонами 108, 96 и 72
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{108 + 96 + 72}{2}} \normalsize = 138}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{138(138-108)(138-96)(138-72)}}{96}\normalsize = 70.5757572}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{138(138-108)(138-96)(138-72)}}{108}\normalsize = 62.7340064}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{138(138-108)(138-96)(138-72)}}{72}\normalsize = 94.1010096}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 108, 96 и 72 равна 70.5757572
Высота треугольника опущенная с вершины A на сторону BC со сторонами 108, 96 и 72 равна 62.7340064
Высота треугольника опущенная с вершины C на сторону AB со сторонами 108, 96 и 72 равна 94.1010096
Ссылка на результат
?n1=108&n2=96&n3=72
Найти высоту треугольника со сторонами 96, 61 и 59
Найти высоту треугольника со сторонами 149, 106 и 59
Найти высоту треугольника со сторонами 71, 53 и 40
Найти высоту треугольника со сторонами 71, 64 и 30
Найти высоту треугольника со сторонами 120, 107 и 28
Найти высоту треугольника со сторонами 128, 109 и 77
Найти высоту треугольника со сторонами 149, 106 и 59
Найти высоту треугольника со сторонами 71, 53 и 40
Найти высоту треугольника со сторонами 71, 64 и 30
Найти высоту треугольника со сторонами 120, 107 и 28
Найти высоту треугольника со сторонами 128, 109 и 77