Рассчитать высоту треугольника со сторонами 108, 97 и 90
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{108 + 97 + 90}{2}} \normalsize = 147.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{147.5(147.5-108)(147.5-97)(147.5-90)}}{97}\normalsize = 84.8071426}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{147.5(147.5-108)(147.5-97)(147.5-90)}}{108}\normalsize = 76.1693781}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{147.5(147.5-108)(147.5-97)(147.5-90)}}{90}\normalsize = 91.4032537}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 108, 97 и 90 равна 84.8071426
Высота треугольника опущенная с вершины A на сторону BC со сторонами 108, 97 и 90 равна 76.1693781
Высота треугольника опущенная с вершины C на сторону AB со сторонами 108, 97 и 90 равна 91.4032537
Ссылка на результат
?n1=108&n2=97&n3=90
Найти высоту треугольника со сторонами 147, 141 и 42
Найти высоту треугольника со сторонами 93, 85 и 69
Найти высоту треугольника со сторонами 94, 83 и 43
Найти высоту треугольника со сторонами 125, 119 и 119
Найти высоту треугольника со сторонами 143, 88 и 87
Найти высоту треугольника со сторонами 150, 123 и 113
Найти высоту треугольника со сторонами 93, 85 и 69
Найти высоту треугольника со сторонами 94, 83 и 43
Найти высоту треугольника со сторонами 125, 119 и 119
Найти высоту треугольника со сторонами 143, 88 и 87
Найти высоту треугольника со сторонами 150, 123 и 113