Рассчитать высоту треугольника со сторонами 108, 99 и 63
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{108 + 99 + 63}{2}} \normalsize = 135}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{135(135-108)(135-99)(135-63)}}{99}\normalsize = 62.0956341}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{135(135-108)(135-99)(135-63)}}{108}\normalsize = 56.9209979}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{135(135-108)(135-99)(135-63)}}{63}\normalsize = 97.5788535}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 108, 99 и 63 равна 62.0956341
Высота треугольника опущенная с вершины A на сторону BC со сторонами 108, 99 и 63 равна 56.9209979
Высота треугольника опущенная с вершины C на сторону AB со сторонами 108, 99 и 63 равна 97.5788535
Ссылка на результат
?n1=108&n2=99&n3=63
Найти высоту треугольника со сторонами 106, 100 и 75
Найти высоту треугольника со сторонами 143, 135 и 65
Найти высоту треугольника со сторонами 138, 118 и 84
Найти высоту треугольника со сторонами 74, 50 и 30
Найти высоту треугольника со сторонами 134, 133 и 121
Найти высоту треугольника со сторонами 83, 56 и 48
Найти высоту треугольника со сторонами 143, 135 и 65
Найти высоту треугольника со сторонами 138, 118 и 84
Найти высоту треугольника со сторонами 74, 50 и 30
Найти высоту треугольника со сторонами 134, 133 и 121
Найти высоту треугольника со сторонами 83, 56 и 48