Рассчитать высоту треугольника со сторонами 108, 99 и 72
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{108 + 99 + 72}{2}} \normalsize = 139.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{139.5(139.5-108)(139.5-99)(139.5-72)}}{99}\normalsize = 70.019109}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{139.5(139.5-108)(139.5-99)(139.5-72)}}{108}\normalsize = 64.1841832}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{139.5(139.5-108)(139.5-99)(139.5-72)}}{72}\normalsize = 96.2762748}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 108, 99 и 72 равна 70.019109
Высота треугольника опущенная с вершины A на сторону BC со сторонами 108, 99 и 72 равна 64.1841832
Высота треугольника опущенная с вершины C на сторону AB со сторонами 108, 99 и 72 равна 96.2762748
Ссылка на результат
?n1=108&n2=99&n3=72
Найти высоту треугольника со сторонами 44, 29 и 29
Найти высоту треугольника со сторонами 123, 123 и 54
Найти высоту треугольника со сторонами 129, 87 и 48
Найти высоту треугольника со сторонами 130, 104 и 33
Найти высоту треугольника со сторонами 91, 90 и 83
Найти высоту треугольника со сторонами 145, 142 и 126
Найти высоту треугольника со сторонами 123, 123 и 54
Найти высоту треугольника со сторонами 129, 87 и 48
Найти высоту треугольника со сторонами 130, 104 и 33
Найти высоту треугольника со сторонами 91, 90 и 83
Найти высоту треугольника со сторонами 145, 142 и 126