Рассчитать высоту треугольника со сторонами 109, 103 и 35

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{109 + 103 + 35}{2}} \normalsize = 123.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{123.5(123.5-109)(123.5-103)(123.5-35)}}{103}\normalsize = 34.9992564}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{123.5(123.5-109)(123.5-103)(123.5-35)}}{109}\normalsize = 33.0726918}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{123.5(123.5-109)(123.5-103)(123.5-35)}}{35}\normalsize = 102.997812}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 109, 103 и 35 равна 34.9992564
Высота треугольника опущенная с вершины A на сторону BC со сторонами 109, 103 и 35 равна 33.0726918
Высота треугольника опущенная с вершины C на сторону AB со сторонами 109, 103 и 35 равна 102.997812
Ссылка на результат
?n1=109&n2=103&n3=35