Рассчитать высоту треугольника со сторонами 109, 104 и 40
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{109 + 104 + 40}{2}} \normalsize = 126.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{126.5(126.5-109)(126.5-104)(126.5-40)}}{104}\normalsize = 39.9172171}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{126.5(126.5-109)(126.5-104)(126.5-40)}}{109}\normalsize = 38.0861521}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{126.5(126.5-109)(126.5-104)(126.5-40)}}{40}\normalsize = 103.784765}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 109, 104 и 40 равна 39.9172171
Высота треугольника опущенная с вершины A на сторону BC со сторонами 109, 104 и 40 равна 38.0861521
Высота треугольника опущенная с вершины C на сторону AB со сторонами 109, 104 и 40 равна 103.784765
Ссылка на результат
?n1=109&n2=104&n3=40
Найти высоту треугольника со сторонами 147, 114 и 52
Найти высоту треугольника со сторонами 68, 60 и 55
Найти высоту треугольника со сторонами 119, 106 и 49
Найти высоту треугольника со сторонами 74, 58 и 53
Найти высоту треугольника со сторонами 121, 117 и 18
Найти высоту треугольника со сторонами 117, 112 и 77
Найти высоту треугольника со сторонами 68, 60 и 55
Найти высоту треугольника со сторонами 119, 106 и 49
Найти высоту треугольника со сторонами 74, 58 и 53
Найти высоту треугольника со сторонами 121, 117 и 18
Найти высоту треугольника со сторонами 117, 112 и 77