Рассчитать высоту треугольника со сторонами 109, 106 и 45
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{109 + 106 + 45}{2}} \normalsize = 130}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{130(130-109)(130-106)(130-45)}}{106}\normalsize = 44.5267029}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{130(130-109)(130-106)(130-45)}}{109}\normalsize = 43.3011973}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{130(130-109)(130-106)(130-45)}}{45}\normalsize = 104.885122}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 109, 106 и 45 равна 44.5267029
Высота треугольника опущенная с вершины A на сторону BC со сторонами 109, 106 и 45 равна 43.3011973
Высота треугольника опущенная с вершины C на сторону AB со сторонами 109, 106 и 45 равна 104.885122
Ссылка на результат
?n1=109&n2=106&n3=45
Найти высоту треугольника со сторонами 65, 47 и 38
Найти высоту треугольника со сторонами 139, 123 и 68
Найти высоту треугольника со сторонами 116, 114 и 109
Найти высоту треугольника со сторонами 124, 115 и 14
Найти высоту треугольника со сторонами 113, 102 и 65
Найти высоту треугольника со сторонами 99, 79 и 28
Найти высоту треугольника со сторонами 139, 123 и 68
Найти высоту треугольника со сторонами 116, 114 и 109
Найти высоту треугольника со сторонами 124, 115 и 14
Найти высоту треугольника со сторонами 113, 102 и 65
Найти высоту треугольника со сторонами 99, 79 и 28