Рассчитать высоту треугольника со сторонами 109, 107 и 67
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{109 + 107 + 67}{2}} \normalsize = 141.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{141.5(141.5-109)(141.5-107)(141.5-67)}}{107}\normalsize = 64.2619356}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{141.5(141.5-109)(141.5-107)(141.5-67)}}{109}\normalsize = 63.0828175}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{141.5(141.5-109)(141.5-107)(141.5-67)}}{67}\normalsize = 102.62727}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 109, 107 и 67 равна 64.2619356
Высота треугольника опущенная с вершины A на сторону BC со сторонами 109, 107 и 67 равна 63.0828175
Высота треугольника опущенная с вершины C на сторону AB со сторонами 109, 107 и 67 равна 102.62727
Ссылка на результат
?n1=109&n2=107&n3=67
Найти высоту треугольника со сторонами 123, 98 и 74
Найти высоту треугольника со сторонами 144, 112 и 112
Найти высоту треугольника со сторонами 133, 96 и 63
Найти высоту треугольника со сторонами 126, 112 и 110
Найти высоту треугольника со сторонами 125, 100 и 57
Найти высоту треугольника со сторонами 70, 47 и 33
Найти высоту треугольника со сторонами 144, 112 и 112
Найти высоту треугольника со сторонами 133, 96 и 63
Найти высоту треугольника со сторонами 126, 112 и 110
Найти высоту треугольника со сторонами 125, 100 и 57
Найти высоту треугольника со сторонами 70, 47 и 33