Рассчитать высоту треугольника со сторонами 109, 108 и 104

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{109 + 108 + 104}{2}} \normalsize = 160.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{160.5(160.5-109)(160.5-108)(160.5-104)}}{108}\normalsize = 91.6961811}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{160.5(160.5-109)(160.5-108)(160.5-104)}}{109}\normalsize = 90.8549317}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{160.5(160.5-109)(160.5-108)(160.5-104)}}{104}\normalsize = 95.2229573}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 109, 108 и 104 равна 91.6961811
Высота треугольника опущенная с вершины A на сторону BC со сторонами 109, 108 и 104 равна 90.8549317
Высота треугольника опущенная с вершины C на сторону AB со сторонами 109, 108 и 104 равна 95.2229573
Ссылка на результат
?n1=109&n2=108&n3=104