Рассчитать высоту треугольника со сторонами 109, 109 и 56
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{109 + 109 + 56}{2}} \normalsize = 137}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{137(137-109)(137-109)(137-56)}}{109}\normalsize = 54.1208143}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{137(137-109)(137-109)(137-56)}}{109}\normalsize = 54.1208143}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{137(137-109)(137-109)(137-56)}}{56}\normalsize = 105.342299}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 109, 109 и 56 равна 54.1208143
Высота треугольника опущенная с вершины A на сторону BC со сторонами 109, 109 и 56 равна 54.1208143
Высота треугольника опущенная с вершины C на сторону AB со сторонами 109, 109 и 56 равна 105.342299
Ссылка на результат
?n1=109&n2=109&n3=56
Найти высоту треугольника со сторонами 117, 73 и 64
Найти высоту треугольника со сторонами 106, 77 и 55
Найти высоту треугольника со сторонами 104, 91 и 23
Найти высоту треугольника со сторонами 78, 60 и 33
Найти высоту треугольника со сторонами 129, 101 и 98
Найти высоту треугольника со сторонами 141, 133 и 68
Найти высоту треугольника со сторонами 106, 77 и 55
Найти высоту треугольника со сторонами 104, 91 и 23
Найти высоту треугольника со сторонами 78, 60 и 33
Найти высоту треугольника со сторонами 129, 101 и 98
Найти высоту треугольника со сторонами 141, 133 и 68