Рассчитать высоту треугольника со сторонами 109, 58 и 56
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{109 + 58 + 56}{2}} \normalsize = 111.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{111.5(111.5-109)(111.5-58)(111.5-56)}}{58}\normalsize = 31.3713222}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{111.5(111.5-109)(111.5-58)(111.5-56)}}{109}\normalsize = 16.6929971}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{111.5(111.5-109)(111.5-58)(111.5-56)}}{56}\normalsize = 32.4917265}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 109, 58 и 56 равна 31.3713222
Высота треугольника опущенная с вершины A на сторону BC со сторонами 109, 58 и 56 равна 16.6929971
Высота треугольника опущенная с вершины C на сторону AB со сторонами 109, 58 и 56 равна 32.4917265
Ссылка на результат
?n1=109&n2=58&n3=56
Найти высоту треугольника со сторонами 124, 108 и 77
Найти высоту треугольника со сторонами 126, 112 и 76
Найти высоту треугольника со сторонами 150, 113 и 67
Найти высоту треугольника со сторонами 94, 80 и 47
Найти высоту треугольника со сторонами 76, 53 и 34
Найти высоту треугольника со сторонами 139, 117 и 32
Найти высоту треугольника со сторонами 126, 112 и 76
Найти высоту треугольника со сторонами 150, 113 и 67
Найти высоту треугольника со сторонами 94, 80 и 47
Найти высоту треугольника со сторонами 76, 53 и 34
Найти высоту треугольника со сторонами 139, 117 и 32