Рассчитать высоту треугольника со сторонами 109, 59 и 56
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{109 + 59 + 56}{2}} \normalsize = 112}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{112(112-109)(112-59)(112-56)}}{59}\normalsize = 33.8516289}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{112(112-109)(112-59)(112-56)}}{109}\normalsize = 18.3233588}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{112(112-109)(112-59)(112-56)}}{56}\normalsize = 35.665109}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 109, 59 и 56 равна 33.8516289
Высота треугольника опущенная с вершины A на сторону BC со сторонами 109, 59 и 56 равна 18.3233588
Высота треугольника опущенная с вершины C на сторону AB со сторонами 109, 59 и 56 равна 35.665109
Ссылка на результат
?n1=109&n2=59&n3=56
Найти высоту треугольника со сторонами 133, 112 и 26
Найти высоту треугольника со сторонами 84, 57 и 44
Найти высоту треугольника со сторонами 131, 109 и 30
Найти высоту треугольника со сторонами 61, 58 и 50
Найти высоту треугольника со сторонами 146, 107 и 47
Найти высоту треугольника со сторонами 110, 84 и 78
Найти высоту треугольника со сторонами 84, 57 и 44
Найти высоту треугольника со сторонами 131, 109 и 30
Найти высоту треугольника со сторонами 61, 58 и 50
Найти высоту треугольника со сторонами 146, 107 и 47
Найти высоту треугольника со сторонами 110, 84 и 78