Рассчитать высоту треугольника со сторонами 109, 67 и 60
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{109 + 67 + 60}{2}} \normalsize = 118}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{118(118-109)(118-67)(118-60)}}{67}\normalsize = 52.9074142}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{118(118-109)(118-67)(118-60)}}{109}\normalsize = 32.5210711}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{118(118-109)(118-67)(118-60)}}{60}\normalsize = 59.0799458}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 109, 67 и 60 равна 52.9074142
Высота треугольника опущенная с вершины A на сторону BC со сторонами 109, 67 и 60 равна 32.5210711
Высота треугольника опущенная с вершины C на сторону AB со сторонами 109, 67 и 60 равна 59.0799458
Ссылка на результат
?n1=109&n2=67&n3=60
Найти высоту треугольника со сторонами 94, 78 и 68
Найти высоту треугольника со сторонами 118, 79 и 56
Найти высоту треугольника со сторонами 107, 85 и 85
Найти высоту треугольника со сторонами 127, 110 и 50
Найти высоту треугольника со сторонами 114, 92 и 31
Найти высоту треугольника со сторонами 130, 130 и 82
Найти высоту треугольника со сторонами 118, 79 и 56
Найти высоту треугольника со сторонами 107, 85 и 85
Найти высоту треугольника со сторонами 127, 110 и 50
Найти высоту треугольника со сторонами 114, 92 и 31
Найти высоту треугольника со сторонами 130, 130 и 82