Рассчитать высоту треугольника со сторонами 109, 73 и 64
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{109 + 73 + 64}{2}} \normalsize = 123}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{123(123-109)(123-73)(123-64)}}{73}\normalsize = 61.7496808}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{123(123-109)(123-73)(123-64)}}{109}\normalsize = 41.3552908}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{123(123-109)(123-73)(123-64)}}{64}\normalsize = 70.4332297}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 109, 73 и 64 равна 61.7496808
Высота треугольника опущенная с вершины A на сторону BC со сторонами 109, 73 и 64 равна 41.3552908
Высота треугольника опущенная с вершины C на сторону AB со сторонами 109, 73 и 64 равна 70.4332297
Ссылка на результат
?n1=109&n2=73&n3=64
Найти высоту треугольника со сторонами 83, 83 и 43
Найти высоту треугольника со сторонами 100, 98 и 78
Найти высоту треугольника со сторонами 132, 123 и 10
Найти высоту треугольника со сторонами 135, 77 и 64
Найти высоту треугольника со сторонами 131, 101 и 78
Найти высоту треугольника со сторонами 138, 101 и 80
Найти высоту треугольника со сторонами 100, 98 и 78
Найти высоту треугольника со сторонами 132, 123 и 10
Найти высоту треугольника со сторонами 135, 77 и 64
Найти высоту треугольника со сторонами 131, 101 и 78
Найти высоту треугольника со сторонами 138, 101 и 80