Рассчитать высоту треугольника со сторонами 109, 80 и 51
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{109 + 80 + 51}{2}} \normalsize = 120}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{120(120-109)(120-80)(120-51)}}{80}\normalsize = 47.7179212}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{120(120-109)(120-80)(120-51)}}{109}\normalsize = 35.0223275}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{120(120-109)(120-80)(120-51)}}{51}\normalsize = 74.851641}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 109, 80 и 51 равна 47.7179212
Высота треугольника опущенная с вершины A на сторону BC со сторонами 109, 80 и 51 равна 35.0223275
Высота треугольника опущенная с вершины C на сторону AB со сторонами 109, 80 и 51 равна 74.851641
Ссылка на результат
?n1=109&n2=80&n3=51
Найти высоту треугольника со сторонами 118, 104 и 21
Найти высоту треугольника со сторонами 133, 131 и 117
Найти высоту треугольника со сторонами 146, 126 и 59
Найти высоту треугольника со сторонами 106, 92 и 55
Найти высоту треугольника со сторонами 147, 130 и 61
Найти высоту треугольника со сторонами 84, 69 и 54
Найти высоту треугольника со сторонами 133, 131 и 117
Найти высоту треугольника со сторонами 146, 126 и 59
Найти высоту треугольника со сторонами 106, 92 и 55
Найти высоту треугольника со сторонами 147, 130 и 61
Найти высоту треугольника со сторонами 84, 69 и 54