Рассчитать высоту треугольника со сторонами 109, 80 и 72

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{109 + 80 + 72}{2}} \normalsize = 130.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{130.5(130.5-109)(130.5-80)(130.5-72)}}{80}\normalsize = 71.9760678}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{130.5(130.5-109)(130.5-80)(130.5-72)}}{109}\normalsize = 52.8264718}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{130.5(130.5-109)(130.5-80)(130.5-72)}}{72}\normalsize = 79.9734087}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 109, 80 и 72 равна 71.9760678
Высота треугольника опущенная с вершины A на сторону BC со сторонами 109, 80 и 72 равна 52.8264718
Высота треугольника опущенная с вершины C на сторону AB со сторонами 109, 80 и 72 равна 79.9734087
Ссылка на результат
?n1=109&n2=80&n3=72