Рассчитать высоту треугольника со сторонами 109, 85 и 34
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{109 + 85 + 34}{2}} \normalsize = 114}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{114(114-109)(114-85)(114-34)}}{85}\normalsize = 27.0578005}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{114(114-109)(114-85)(114-34)}}{109}\normalsize = 21.1001196}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{114(114-109)(114-85)(114-34)}}{34}\normalsize = 67.6445012}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 109, 85 и 34 равна 27.0578005
Высота треугольника опущенная с вершины A на сторону BC со сторонами 109, 85 и 34 равна 21.1001196
Высота треугольника опущенная с вершины C на сторону AB со сторонами 109, 85 и 34 равна 67.6445012
Ссылка на результат
?n1=109&n2=85&n3=34
Найти высоту треугольника со сторонами 64, 46 и 19
Найти высоту треугольника со сторонами 148, 141 и 94
Найти высоту треугольника со сторонами 132, 92 и 71
Найти высоту треугольника со сторонами 80, 69 и 32
Найти высоту треугольника со сторонами 128, 116 и 61
Найти высоту треугольника со сторонами 133, 78 и 69
Найти высоту треугольника со сторонами 148, 141 и 94
Найти высоту треугольника со сторонами 132, 92 и 71
Найти высоту треугольника со сторонами 80, 69 и 32
Найти высоту треугольника со сторонами 128, 116 и 61
Найти высоту треугольника со сторонами 133, 78 и 69