Рассчитать высоту треугольника со сторонами 109, 87 и 50
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{109 + 87 + 50}{2}} \normalsize = 123}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{123(123-109)(123-87)(123-50)}}{87}\normalsize = 48.9035061}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{123(123-109)(123-87)(123-50)}}{109}\normalsize = 39.0330737}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{123(123-109)(123-87)(123-50)}}{50}\normalsize = 85.0921007}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 109, 87 и 50 равна 48.9035061
Высота треугольника опущенная с вершины A на сторону BC со сторонами 109, 87 и 50 равна 39.0330737
Высота треугольника опущенная с вершины C на сторону AB со сторонами 109, 87 и 50 равна 85.0921007
Ссылка на результат
?n1=109&n2=87&n3=50
Найти высоту треугольника со сторонами 106, 103 и 8
Найти высоту треугольника со сторонами 103, 87 и 19
Найти высоту треугольника со сторонами 145, 101 и 87
Найти высоту треугольника со сторонами 120, 109 и 82
Найти высоту треугольника со сторонами 150, 142 и 117
Найти высоту треугольника со сторонами 116, 74 и 66
Найти высоту треугольника со сторонами 103, 87 и 19
Найти высоту треугольника со сторонами 145, 101 и 87
Найти высоту треугольника со сторонами 120, 109 и 82
Найти высоту треугольника со сторонами 150, 142 и 117
Найти высоту треугольника со сторонами 116, 74 и 66