Рассчитать высоту треугольника со сторонами 109, 95 и 42
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{109 + 95 + 42}{2}} \normalsize = 123}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{123(123-109)(123-95)(123-42)}}{95}\normalsize = 41.6049006}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{123(123-109)(123-95)(123-42)}}{109}\normalsize = 36.2611519}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{123(123-109)(123-95)(123-42)}}{42}\normalsize = 94.1063228}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 109, 95 и 42 равна 41.6049006
Высота треугольника опущенная с вершины A на сторону BC со сторонами 109, 95 и 42 равна 36.2611519
Высота треугольника опущенная с вершины C на сторону AB со сторонами 109, 95 и 42 равна 94.1063228
Ссылка на результат
?n1=109&n2=95&n3=42
Найти высоту треугольника со сторонами 132, 118 и 53
Найти высоту треугольника со сторонами 81, 69 и 21
Найти высоту треугольника со сторонами 36, 30 и 16
Найти высоту треугольника со сторонами 79, 52 и 43
Найти высоту треугольника со сторонами 76, 66 и 14
Найти высоту треугольника со сторонами 73, 73 и 60
Найти высоту треугольника со сторонами 81, 69 и 21
Найти высоту треугольника со сторонами 36, 30 и 16
Найти высоту треугольника со сторонами 79, 52 и 43
Найти высоту треугольника со сторонами 76, 66 и 14
Найти высоту треугольника со сторонами 73, 73 и 60