Рассчитать высоту треугольника со сторонами 109, 97 и 62
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{109 + 97 + 62}{2}} \normalsize = 134}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{134(134-109)(134-97)(134-62)}}{97}\normalsize = 61.5953284}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{134(134-109)(134-97)(134-62)}}{109}\normalsize = 54.8141913}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{134(134-109)(134-97)(134-62)}}{62}\normalsize = 96.3668848}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 109, 97 и 62 равна 61.5953284
Высота треугольника опущенная с вершины A на сторону BC со сторонами 109, 97 и 62 равна 54.8141913
Высота треугольника опущенная с вершины C на сторону AB со сторонами 109, 97 и 62 равна 96.3668848
Ссылка на результат
?n1=109&n2=97&n3=62
Найти высоту треугольника со сторонами 149, 142 и 133
Найти высоту треугольника со сторонами 125, 111 и 105
Найти высоту треугольника со сторонами 97, 96 и 17
Найти высоту треугольника со сторонами 150, 143 и 118
Найти высоту треугольника со сторонами 90, 80 и 17
Найти высоту треугольника со сторонами 144, 110 и 99
Найти высоту треугольника со сторонами 125, 111 и 105
Найти высоту треугольника со сторонами 97, 96 и 17
Найти высоту треугольника со сторонами 150, 143 и 118
Найти высоту треугольника со сторонами 90, 80 и 17
Найти высоту треугольника со сторонами 144, 110 и 99