Рассчитать высоту треугольника со сторонами 109, 99 и 61
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{109 + 99 + 61}{2}} \normalsize = 134.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{134.5(134.5-109)(134.5-99)(134.5-61)}}{99}\normalsize = 60.4343534}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{134.5(134.5-109)(134.5-99)(134.5-61)}}{109}\normalsize = 54.8899173}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{134.5(134.5-109)(134.5-99)(134.5-61)}}{61}\normalsize = 98.0819833}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 109, 99 и 61 равна 60.4343534
Высота треугольника опущенная с вершины A на сторону BC со сторонами 109, 99 и 61 равна 54.8899173
Высота треугольника опущенная с вершины C на сторону AB со сторонами 109, 99 и 61 равна 98.0819833
Ссылка на результат
?n1=109&n2=99&n3=61
Найти высоту треугольника со сторонами 118, 104 и 51
Найти высоту треугольника со сторонами 95, 89 и 18
Найти высоту треугольника со сторонами 111, 104 и 61
Найти высоту треугольника со сторонами 112, 93 и 21
Найти высоту треугольника со сторонами 147, 113 и 59
Найти высоту треугольника со сторонами 132, 128 и 22
Найти высоту треугольника со сторонами 95, 89 и 18
Найти высоту треугольника со сторонами 111, 104 и 61
Найти высоту треугольника со сторонами 112, 93 и 21
Найти высоту треугольника со сторонами 147, 113 и 59
Найти высоту треугольника со сторонами 132, 128 и 22