Рассчитать высоту треугольника со сторонами 109, 99 и 91
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{109 + 99 + 91}{2}} \normalsize = 149.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{149.5(149.5-109)(149.5-99)(149.5-91)}}{99}\normalsize = 85.441041}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{149.5(149.5-109)(149.5-99)(149.5-91)}}{109}\normalsize = 77.6024134}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{149.5(149.5-109)(149.5-99)(149.5-91)}}{91}\normalsize = 92.9523413}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 109, 99 и 91 равна 85.441041
Высота треугольника опущенная с вершины A на сторону BC со сторонами 109, 99 и 91 равна 77.6024134
Высота треугольника опущенная с вершины C на сторону AB со сторонами 109, 99 и 91 равна 92.9523413
Ссылка на результат
?n1=109&n2=99&n3=91
Найти высоту треугольника со сторонами 142, 127 и 76
Найти высоту треугольника со сторонами 146, 143 и 58
Найти высоту треугольника со сторонами 144, 104 и 49
Найти высоту треугольника со сторонами 71, 69 и 28
Найти высоту треугольника со сторонами 143, 103 и 53
Найти высоту треугольника со сторонами 123, 114 и 34
Найти высоту треугольника со сторонами 146, 143 и 58
Найти высоту треугольника со сторонами 144, 104 и 49
Найти высоту треугольника со сторонами 71, 69 и 28
Найти высоту треугольника со сторонами 143, 103 и 53
Найти высоту треугольника со сторонами 123, 114 и 34