Рассчитать высоту треугольника со сторонами 110, 102 и 71
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{110 + 102 + 71}{2}} \normalsize = 141.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{141.5(141.5-110)(141.5-102)(141.5-71)}}{102}\normalsize = 69.0806519}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{141.5(141.5-110)(141.5-102)(141.5-71)}}{110}\normalsize = 64.0566045}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{141.5(141.5-110)(141.5-102)(141.5-71)}}{71}\normalsize = 99.2426266}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 110, 102 и 71 равна 69.0806519
Высота треугольника опущенная с вершины A на сторону BC со сторонами 110, 102 и 71 равна 64.0566045
Высота треугольника опущенная с вершины C на сторону AB со сторонами 110, 102 и 71 равна 99.2426266
Ссылка на результат
?n1=110&n2=102&n3=71
Найти высоту треугольника со сторонами 113, 75 и 73
Найти высоту треугольника со сторонами 110, 110 и 59
Найти высоту треугольника со сторонами 122, 86 и 84
Найти высоту треугольника со сторонами 109, 104 и 35
Найти высоту треугольника со сторонами 134, 119 и 117
Найти высоту треугольника со сторонами 113, 108 и 25
Найти высоту треугольника со сторонами 110, 110 и 59
Найти высоту треугольника со сторонами 122, 86 и 84
Найти высоту треугольника со сторонами 109, 104 и 35
Найти высоту треугольника со сторонами 134, 119 и 117
Найти высоту треугольника со сторонами 113, 108 и 25