Рассчитать высоту треугольника со сторонами 110, 105 и 103
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{110 + 105 + 103}{2}} \normalsize = 159}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{159(159-110)(159-105)(159-103)}}{105}\normalsize = 92.4545294}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{159(159-110)(159-105)(159-103)}}{110}\normalsize = 88.2520508}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{159(159-110)(159-105)(159-103)}}{103}\normalsize = 94.2497629}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 110, 105 и 103 равна 92.4545294
Высота треугольника опущенная с вершины A на сторону BC со сторонами 110, 105 и 103 равна 88.2520508
Высота треугольника опущенная с вершины C на сторону AB со сторонами 110, 105 и 103 равна 94.2497629
Ссылка на результат
?n1=110&n2=105&n3=103
Найти высоту треугольника со сторонами 70, 48 и 48
Найти высоту треугольника со сторонами 65, 62 и 18
Найти высоту треугольника со сторонами 61, 56 и 45
Найти высоту треугольника со сторонами 113, 106 и 95
Найти высоту треугольника со сторонами 111, 109 и 25
Найти высоту треугольника со сторонами 145, 126 и 46
Найти высоту треугольника со сторонами 65, 62 и 18
Найти высоту треугольника со сторонами 61, 56 и 45
Найти высоту треугольника со сторонами 113, 106 и 95
Найти высоту треугольника со сторонами 111, 109 и 25
Найти высоту треугольника со сторонами 145, 126 и 46