Рассчитать высоту треугольника со сторонами 110, 105 и 43

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{110 + 105 + 43}{2}} \normalsize = 129}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{129(129-110)(129-105)(129-43)}}{105}\normalsize = 42.8417496}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{129(129-110)(129-105)(129-43)}}{110}\normalsize = 40.8943974}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{129(129-110)(129-105)(129-43)}}{43}\normalsize = 104.613575}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 110, 105 и 43 равна 42.8417496
Высота треугольника опущенная с вершины A на сторону BC со сторонами 110, 105 и 43 равна 40.8943974
Высота треугольника опущенная с вершины C на сторону AB со сторонами 110, 105 и 43 равна 104.613575
Ссылка на результат
?n1=110&n2=105&n3=43